skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zureick-Brown, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Using the formalism of Newton hyperplane arrangements, we resolve the open questions regarding angle rank left over from work of the first two authors with Roe and Vincent. As a consequence we end up generalizing theorems of Lenstra–Zarhin and Tankeev proving several new cases of the Tate conjecture for abelian varieties over finite fields. We also obtain an effective version of a recent theorem of Zarhin bounding the heights of coefficients in multiplicative relations among Frobenius eigenvalues. 
    more » « less
  2. Abstract We define a notion of height for rational points with respect to a vector bundle on a proper algebraic stack with finite diagonal over a global field, which generalizes the usual notion for rational points on projective varieties. We explain how to compute this height for various stacks of interest (for instance: classifying stacks of finite groups, symmetric products of varieties, moduli stacks of abelian varieties, weighted projective spaces). In many cases, our uniform definition reproduces ways already in use for measuring the complexity of rational points, while in others it is something new. Finally, we formulate a conjecture about the number of rational points of bounded height (in our sense) on a stack $$\mathcal {X}$$ , which specializes to the Batyrev–Manin conjecture when $$\mathcal {X}$$ is a scheme and to Malle’s conjecture when $$\mathcal {X}$$ is the classifying stack of a finite group. 
    more » « less
  3. Let K be a number field, and let E/K be an elliptic curve over K. The Mordell–Weil theorem asserts that the K-rational points E(K) of E form a finitely generated abelian group. In this work, we complete the classification of the finite groups which appear as the torsion subgroup of E ( K ) for K a cubic number field. To do so, we determine the cubic points on the modular curves X1(N) for N = 21,22,24,25,26,28,30,32,33,35,36,39,45,65,121. As part of our analysis, we determine the complete lists of N for which J0(N), J1(N), and J1(2,2N) have rank 0. We also provide evidence to a generalized version of a conjecture of Conrad, Edixhoven, and Stein by proving that the torsion on J1(N)(Q) is generated by Galois-orbits of cusps of X1(N) for N ≤55, N ̸=54. 
    more » « less